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1. INTRODUCTION

Newton’s method for computing a sunple zero { of a non-linear equation
Jx)=0 has been mudified in a number of ways. For example. Ostrowski
[ 14] discusses a third-order method that evaluates the function £ at every
substep but only requires the derivative f* at every other substep. He also
introduced a fourth-order scheme that uses the same information. King
{9] has shown that there is a family of such methods. Traub [15]
introduced a third-order method which requires one function and two
derivative evaluation per step. Jarratt [6] developed a fourth-order
method which uses the same information. King [8] developed a fifth-order
scheme that requires two evaluations of f and f*. Werner [16] introduced
a method of order 1+\/"2 that requires one evaluation of f and f'. And
recently, the author {13} developed a family of sixth-order methods that
requires 3 evaluations of f and one of f". '
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Here we consiruct a method of order 16, An jteration consists of one
Newton substep followed by a substep of “modified™ Newton (ic., using
the derivanive of f at the firsi substep instead of the current one) and then
two substeps of inverse interpolation.

Let us recali the definitton of order tsee e.g. [ 157

DEFINITION | Let xy. x......x; be a sequence converging to . Let

=X -~ {1

If there exists a resl number p and a nonzero constant O such that

i 1|

I

then pis called the arder of the sequence.

There are two other concepts related to order: one measures the
information used and the other measures the efficiency.

DEFINITION 2 The informational usave d of a scheme is delined as the

number of new preces of information required per 1teration,

DEFINITION 3 The informational efficiency EFF of a scheme is defined
as the order p divided by the informational usage 4.

P
FF=-
E Y, (3}
DEFINITION 4 The efficiency index *EFF is defined by
*EFF =plfd' (4)

where p and 4 are as in definition 3. (This term was introduced by
Ostrowski [ 14]).

In the following section we develop the scheme. Section 3 will be
“devoted to compare the efficiency of all known methods. Section 4
contains a small numerical example.
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2. DEVELOPMENT OF THE METHOD
Let

S
wW,=N, =

r ’t""u’

Fiw i .f'l.\‘,,)+._4fl§‘,,)

T =W e e

T N b A A = 20 f )

{(3)

Nz S —=fiw,)

| = - -l

TIN S =3 )

If we let x,,, =1, we obtain the sixth-order fumily in [13]. Suppose we
compute x,,, by inverse interpolation. Let

RiftxN=a+bifixy—f(x )t+ctfixi—=F1x,))°

+dtfix)=fix,p +elfixp=fix)r (6)

be a polynomial of degree four satisfving

v, =R(fix h

1
————— .—_R'
i {f{x,))

w,=R(f(w, )} (7)
Z=R{f(z,))

t,=R(f(t,)

It is easy to see from the first two equations of (7) that

(8)

WCM—F
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Thus, if we use the notations,

d =d,~x,

Fy=f(B,)—~f1x,) ®)
y i

qi,dzi_ﬁ‘vu for d=w, 21

F; ﬂf’lxj’
then the last three equations of (7) will give
c+dF, +eFl =0,
c+dF.+cFI=¢. {10)
c+dF +eF =,

Solving these equations we have:

©.7%: u=0:
F—F. F._F.
e—_f T -
FI_FW
h = -
S )

! =4
c=¢,—dF,~cF?.

Once the coefficients were computed. then

x,,H=R(0)=x,,—fff‘l-i%+cgf2(x,)—df3(x,)+ef *{x,). (12)

We would like to show that the scheme (5), (12) is of order p=14. To this
end, we use a result of Traub {15].

THEOREM (TRAUB) Ler x;, X;—y,.-.X,_. be n+1 approximations to a
zero § of f. Let Q, , be the interpolatory polynomial at y;, v;_\,...y,_, in
the sense of

- )=F 8y, ) for j=0,1,2,..,n

kJ=0,l,...,}’j_ 1 }'J;l {13)
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where .# is the inverse of f.

Definc 2 new approxumation to ¢ by
RS Q,‘,:;i())-

and let

then

for suitable constants M.

In our case

Note that

4
o ~8i3

357

(1)

(L5}

i(16)

(17)

{18)

(The scheme constructed from the first two substeps of (5) is of order 4,

see [9]), and
€-2~€-3
Substituting these in (16) yields
ey~ el sl yel y=elly.

Thus the order is p=14,

-

(19}

{20)



358 B. NETA

One can improve the order of this scheme just by replacing the third
substep of (5} by a step similar to the fourth one. Let

TU D=2+ BUA )= LGN+ 5 0= (30 + (i = fix, 1)

(2
be a cubic polvnomial satisfying
x,=Tiflx,N
! =T ix, 1 (22
i) o
w,=T(fiw,))
L=Tifis))
Clearly,
HE (23)
! 1
{‘—f‘(.\',.!
Using the notations of (9), the lasi iwo ¢quanions of i22) will be
y+oF, =
P+ . w ¢w' ‘24}
yHoF.=¢.
The coeflicients 5, d are given by
5=¢w—¢z
F,—-F, (25)
y=¢,—0F, N
Once the coeflicients were computed, then
X
=T =%, 5= 8 (5 (26)

In order to obtain the order of the scheme composed of the first two sub-
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steps of (5), (26} and (12), one uses (16). To this end, we need ¢; which is
the error at the third substep. 1t can be computed [rom (16)

€= M_ye, ¢, 3¢y 7)
Combining (16), (27} with {18)}-(19) one obtains
i~y

Thus, the order p=16.

3. EFFICIENCY OF ITERATIVE METHODS

In Section | we stated two definitions for efficiency. In the following we
compare the efliciency of all methods mentioned in Section 1 with our
new method. This is done in two tables. In Table ! the methods listed in
decreasing order of informational efficiency. This shows that our new
method is the most efficient one. In Table II we list the methods in
decreasing order of efficiency indes. Our new method comes second. next
to Muller's method.

TABLE |}

Method Reference QOrder Intormational Usage EFF
Neta This paper 16 5 32
Neta This paper 14 5 28
Muller {11y 1.839 ! 1.83%.
Pegasus [5] 7.275 4 1.819
Anderson and Bibrck 8] § 4 2

S 3 1.667
Secant [R)] 1.618 i 1.618
improved Pegasus f10) 5 3 1,667

3 2 1.5
Neta [ ] 4 1.5
Jarratt 6] 4 3 1-333
Ostrowsks [14] 4 3 1.333
King 9] 4 3 1333
King i#} 5 4 1.25
Murakami [12] 5 4 1.25
Werner [16] 1+./2 2 1.207
Ostrowski {143 3 3 1
Traub [ts] 1 3 |
Snyder {4 3 3 1
Newton LA ] 2 2 i
Steflensen N 2 2 1
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TABLE I
Moetitod Reterence Crder fntormattonat Usage *EFF
Muller [ 1539 1 1839
Netz This paper 16 5 1.741
Improved Pegasus [10] 3 2 1732
5 3 1710
Anderson and Bidrch [1] s 3 1.7Hy
8 4 1.682
Neta This paper 14 s 1.695
Pegasus [5] 7278 4 1642
Secunt [ 1.61% 1 1618
Ostrowsks f14] 4 3 1.487
Kiny 9] 4 3 [.587
Jarratt [6] 4 3 1.587
Neia [13} 6 4 1.565
Werner [16] 1+ 2 2 1.554
King 1&] 5 4 1495
Murakum: [12] 5 4 l.4us
(rstrowsia [14] 3 i 1442
Traub [15] 3 3 1.442
Snyder [4] 3 3 1442
Newton (7] 2 2 t4rd
Steflensen [7] 2 N 1.414

4. NUMERICAL EXAMPLE

Let fix)=x’+1In(]1+4x) where In denotes the logarithm to the natural
base. Hence [=0. Starting at x,=0.1, 0.2. 0.3, 0.4 and 0.5 we compute x,

by our lower order (p=14) algorithm. Calculations were done in double

precision arithmetic on 1BM 370/148 computer.
Results are summarized in the following table. The parameter A that

appears in the algorithm was chosen 4 =2,

TABLE (I
Xg x, x)*
0.1 0.3904.10~ 14 10
0.2 ~0.9487,107 43 0.1638.10~*
03 -0.5322.1074 0.4783.10°7
0.4 —0.3075.10"¢ 0.2684.10°3
65  -02899.10"° 0.6104.10°4
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Note that x, is closer lo | than x3*. In order o reliably determine the

order one would have to use higher precision, see e.g. [2].

-
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